

Name

ANSWERS

Class

MATHS TEACHER HUB

www.MathsTeacherHub.com

Circle theorems

(9 – 1) Topic booklet

Higher

These questions have been collated from previous years GCSE Mathematics papers.

You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser.

Total Marks

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.
- If the question is a 1H question you are not allowed to use a calculator.
- If the question is a 2H or a 3H question, you may use a calculator to help you answer.

Information

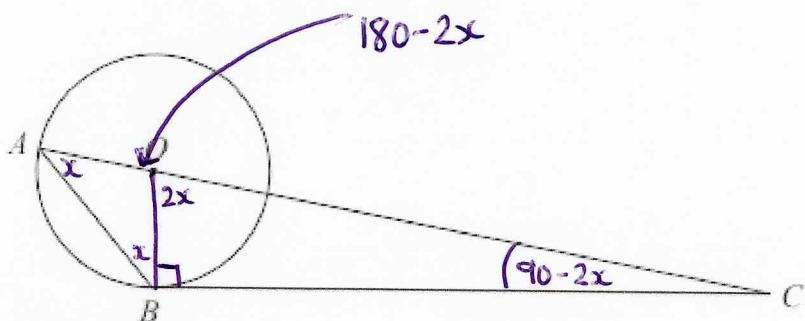
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Answer ALL questions
Write your answers in the space provided.
You must write down all the stages in your working.

11



A and B are points on a circle, centre O .

BC is a tangent to the circle.

AOC is a straight line.

$\text{Angle } ABO = x^\circ$.

Find the size of angle ACB , in terms of x .

Give your answer in its simplest form.

Give reasons for each stage of your working.

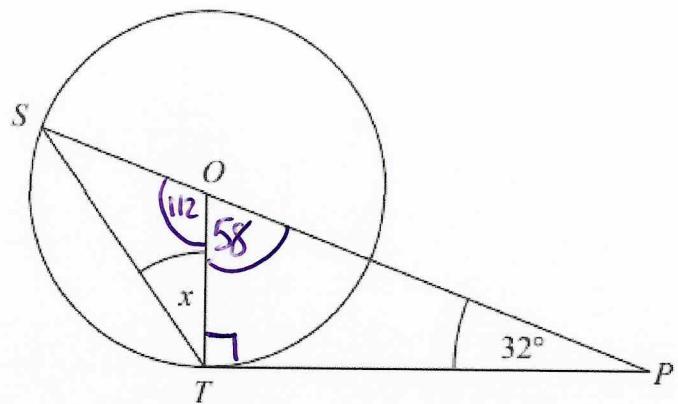
$\text{OBC} = 90^\circ$ tangent meets a radius at 90°

$\text{BAO} = ABO = x$ Base angles of an isosceles triangle are equal

$\text{AOB} = 180 - 2x$ Angles in a triangle add to 180°

$\text{BOC} = 2x$ Angles on a straight line add to 180°

$\text{ACB} = 90 - 2x$ Angles in a triangle add to 180°



S and T are points on the circumference of a circle, centre O .

PT is a tangent to the circle.

SOP is a straight line.

Angle $OPT = 32^\circ$

Work out the size of the angle marked x .

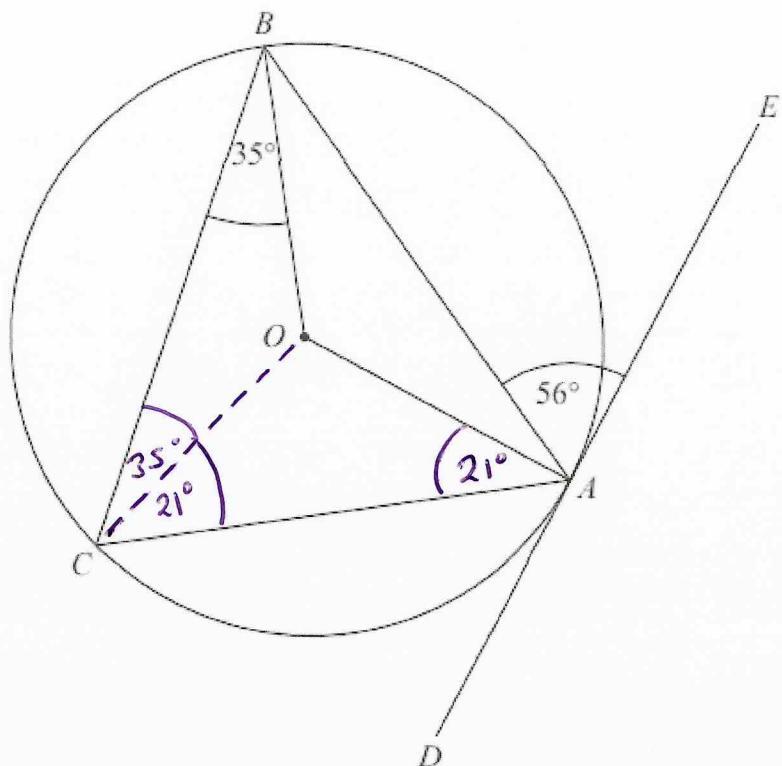
You must give a reason for each stage of your working.

$\text{OTP} = 90^\circ$ tangent meets a radius at 90°

$\text{TOP} = 58^\circ$ Angles in a triangle add to 180°

$\text{SOT} = 122^\circ$ Angles on a straight line add to 180°

$x = 29^\circ$ base angles of an isosceles triangle
are equal.



A, B and C are points on the circumference of a circle, centre O .
 DAE is the tangent to the circle at A .

Angle $BAE = 56^\circ$

Angle $CBO = 35^\circ$

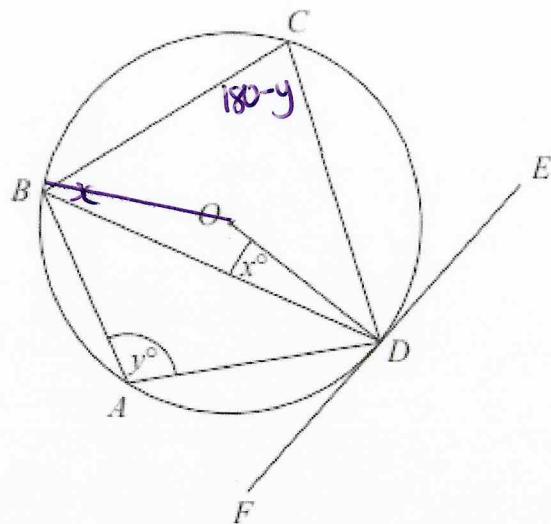
Work out the size of angle CAO .
 You must show all your working.

$BCA = 56^\circ$ Angles that lie between a tangent and a chord, are equal to the angle subtended by the same chord in the alternate segment.

$OCB = 35^\circ$ base angles of an isosceles triangle are equal

$OCA = 21^\circ$ because $56^\circ - 35^\circ$

$CAO = 21^\circ$ base angles of an isosceles triangle are equal 21.



A, B, C and D are points on the circumference of a circle, centre O .
 FDE is a tangent to the circle.

(a) Show that $y - x = 90$

You must give a reason for each stage of your working.

$$\angle OBD = x$$

Base angles of an isosceles triangle
are equal

$$\angle BCD = 180 - y$$

opposite angles of a cyclic quadrilateral
add to 180°

$$\angle BOD = 360 - 2y$$

Angles at the centre, are double the
size of angles at the circumference.

$$x + x + 360 - 2y = 180$$

$$2x + 180 - 2y = 0$$

$$2x + 180 - 2y = 0$$

Dylan was asked to give some possible values for x and y .

He said,

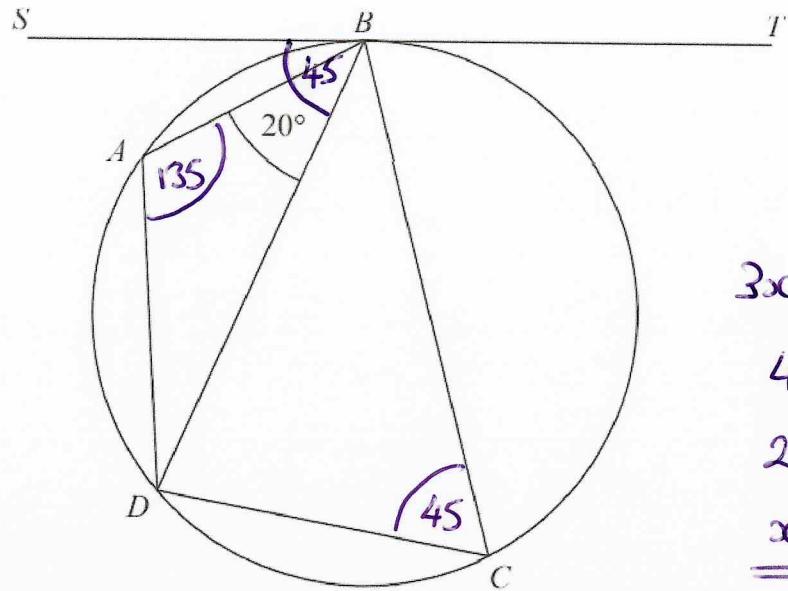
" y could be 200 and x could be 110, because $200 - 110 = 90$ "

(b) Is Dylan correct?

You must give a reason for your answer.

No y must be less than 180° as it is
an angle inside a triangle

(1)



$$3x + x = 180$$

$$4x = 180$$

$$2x = 90$$

$$\underline{\underline{x = 45^\circ}}$$

A, B, C and D are four points on a circle.

SBT is a tangent to the circle.

$\text{Angle } ABD = 20^\circ$

the size of angle BAD : the size of angle $BCD = 3 : 1$

Find the size of angle SBA .

Give a reason for each stage of your working.

BAD and $DCB = 180$

Opposite angles of a cyclic quadrilateral add to 180°

$SBD = 45^\circ$

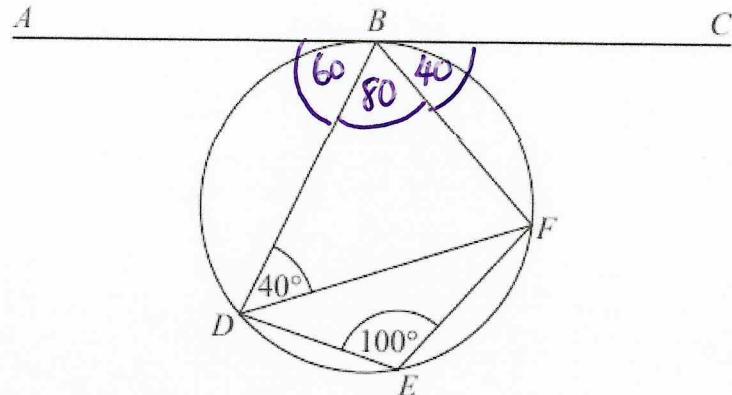
The angle that lies between a tangent and a chord is equal to the angle subtended by the same chord in the alternate segment.

$SBA = 25^\circ$

$$45 - 20 = 25$$

25

o



Points B, D, E and F lie on a circle.
 ABC is the tangent to the circle at B .

Find the size of angle ABD .

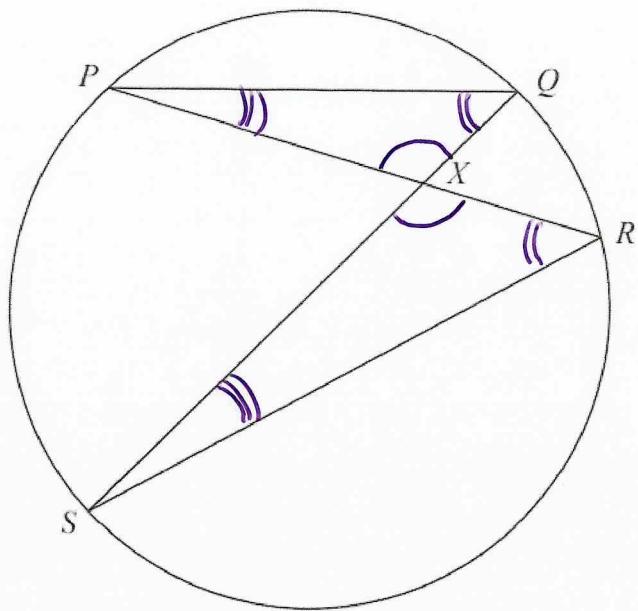
You must give a reason for each stage of your working.

$\angle DBF = 80^\circ$ Opposite angles of a cyclic quadrilateral
 add to 180°

$\angle CBF = 40^\circ$ The angle that lies between a tangent
 and a chord, is equal to the angle
 subtended by the same chord in the
 alternate segment.

$\angle ABD = 60^\circ$ Angles on a straight line add to 180°

15 P, Q, R and S are four points on a circle.



PXR and SXQ are straight lines.

Prove that triangle PQX and triangle SRX are similar.

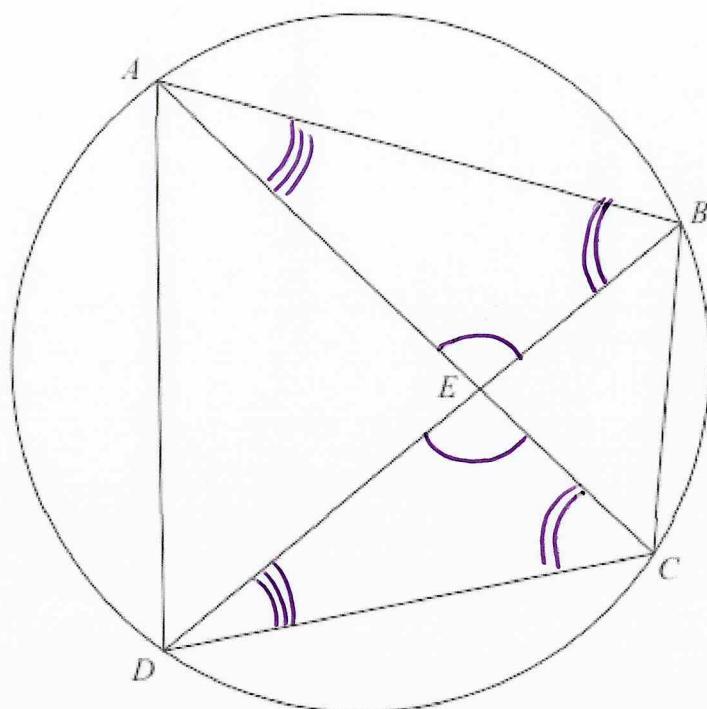
$PXQ = SXR$ vertically opposite angles are equal.

$PQS = PRS$ Angles in the same segment are equal.

$RSQ = RPQ$ Angles in the same segment are equal

Both triangles are similar as they have three identical angles (AAA)

15 A, B, C and D are four points on the circumference of a circle.



AEC and BED are straight lines.

Prove that triangle ABE and triangle DCE are similar.
You must give reasons for each stage of your working.

$$\angle AEB = \angle DEC$$

Vertically opposite angles are equal

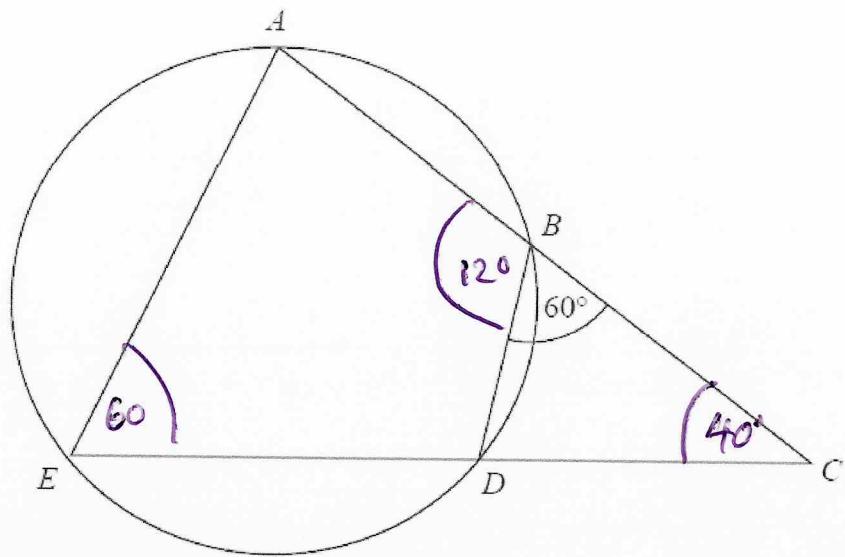
$$\angle ABE = \angle ECD$$

Angles from the same chord are equal

$$\angle BAE = \angle BDC$$

Angles from the same chord are equal

Both triangles are similar as they have
three identical angles (AAA)



$ABDE$ is a cyclic quadrilateral.

ABC and EDC are straight lines.

$\text{Angle } BDC = 60^\circ$

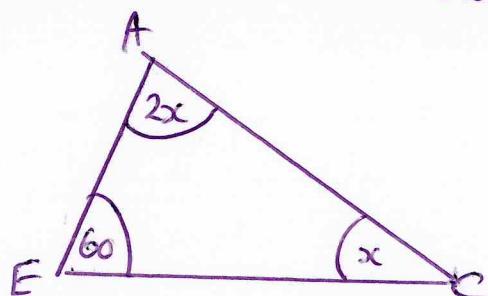
Given that

size of angle EAB : size of angle BCD = 2 : 1

work out the size of angle BCD .

You must show all your working.

$\text{ABD} = 120^\circ$ Angles on a straight line add to 180°
 $\text{AED} = 60^\circ$ opposite angles of a cyclic quadrilateral
add to 180°



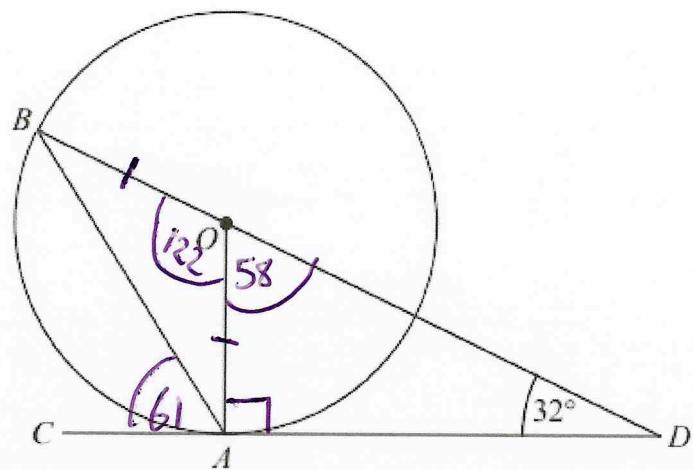
$$60 + 2x + x = 180$$

$$60 + 3x = 180$$

$$3x = 120$$

$$x = 40$$

40



A and B are points on a circle with centre O .
 CAD is the tangent to the circle at A .
 BOD is a straight line.

Angle $ODA = 32^\circ$

Work out the size of angle CAB .
You must show all your working.

$OAD = 90^\circ$ tangent meets a radius at 90°

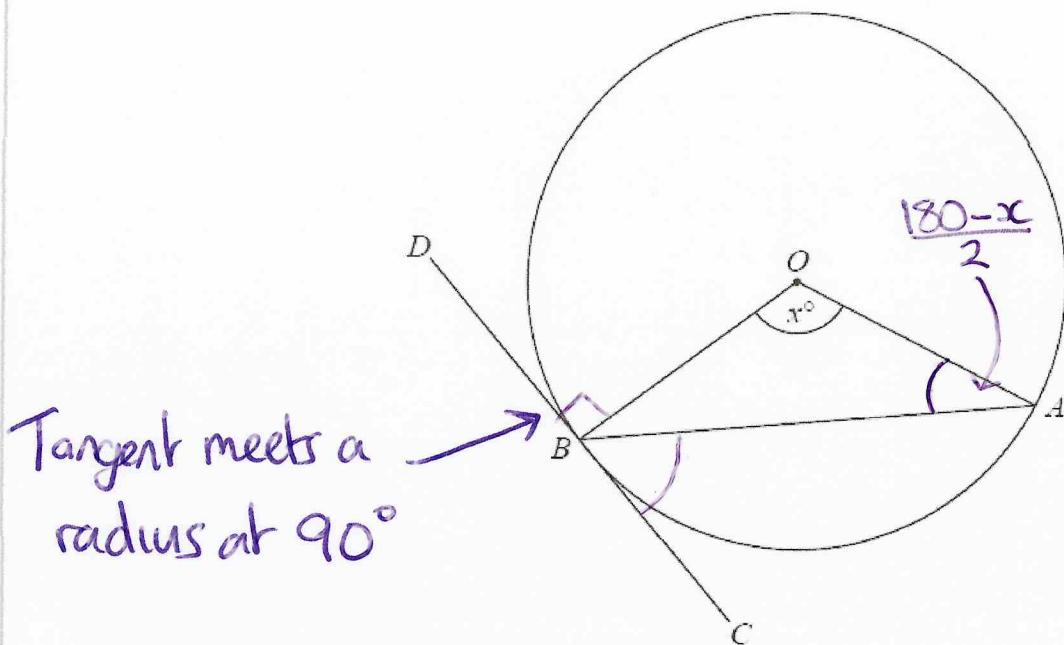
$DOA = 58^\circ$ Angles in a triangle add to 180°

$BOA = 122^\circ$ Angles on a straight line add to 180°

OAB and $OB\bar{A} = 29^\circ$ base angles of an isosceles triangle are equal.

$CAB = 61^\circ$ $90 - 29 = 61$

61



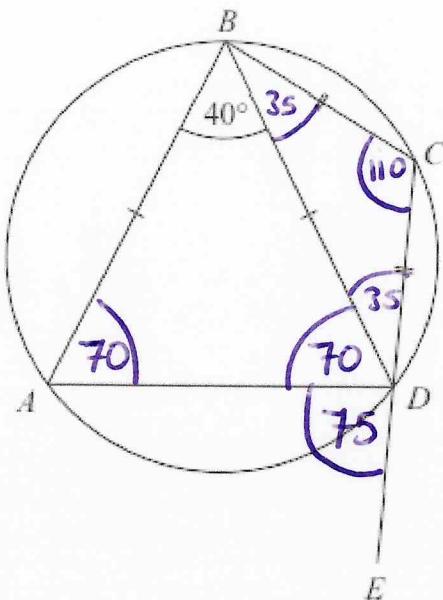
A and B are points on a circle, centre O .
 DBC is the tangent to the circle at B .
Angle $AOB = x^\circ$

Show that angle $ABC = \frac{1}{2}x^\circ$

You must give a reason for each stage of your working.

$$\begin{aligned}
ABC &= 180 - 90 - \left(\frac{180-x}{2}\right) \\
&= 90 - 90 + \frac{x}{2} \\
&= \frac{x}{2} \\
&= \frac{1}{2}x
\end{aligned}$$

18 The points A , B , C and D lie on a circle.
 CDE is a straight line.



$$BA = BD$$

$$CB = CD$$

$$\text{Angle } ABD = 40^\circ$$

Work out the size of angle ADE .

You must give a reason for each stage of your working.

$\text{BAD} = \text{BDA} = 70^\circ$ base angles of an isosceles triangle are equal

$\text{BCD} = 110^\circ$ opposite angles of a cyclic quadrilateral add to 180°

$\text{CDB} = \text{CBD} = 35^\circ$ base angles of an isosceles triangle are equal.

$\text{ADE} = 75^\circ$ Angles on a straight line add to 180°

20 A, B, C and D are points on the circumference of a circle, centre O .
 ADE and BCE are straight lines.



Work out the size of angle CDE .

Give a reason for each stage of your working.

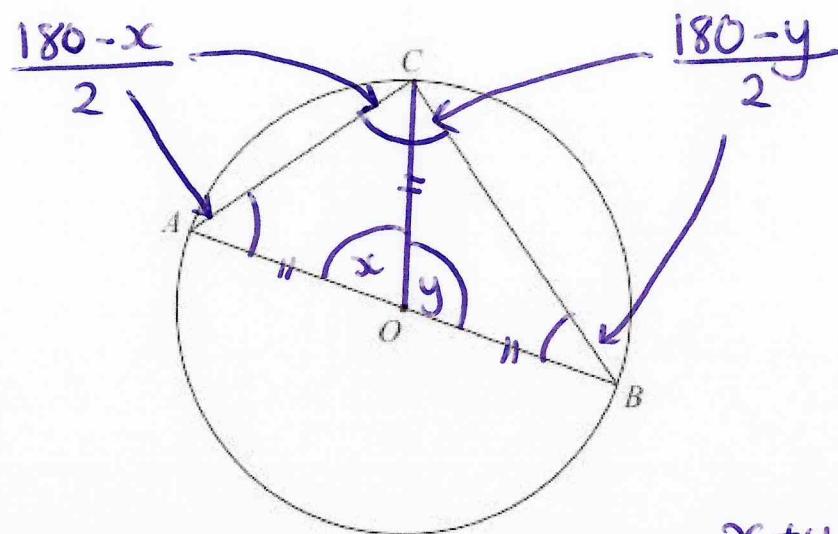
$BAD = 66^\circ$ Angles at the centre are double the size of an angle at the circumference.

$BCD = 144^\circ$ opposite angles of a cyclic quadrilateral add to 180°

$DCE = 66^\circ$ Angles on a straight line add to 180°

$CDE = 98^\circ$ Angles in a triangle add to 180°

98



$$x+y = 180$$

A, B and C are points on the circumference of a circle, centre O .
 AOB is a diameter of the circle.

Prove that angle ACB is 90°

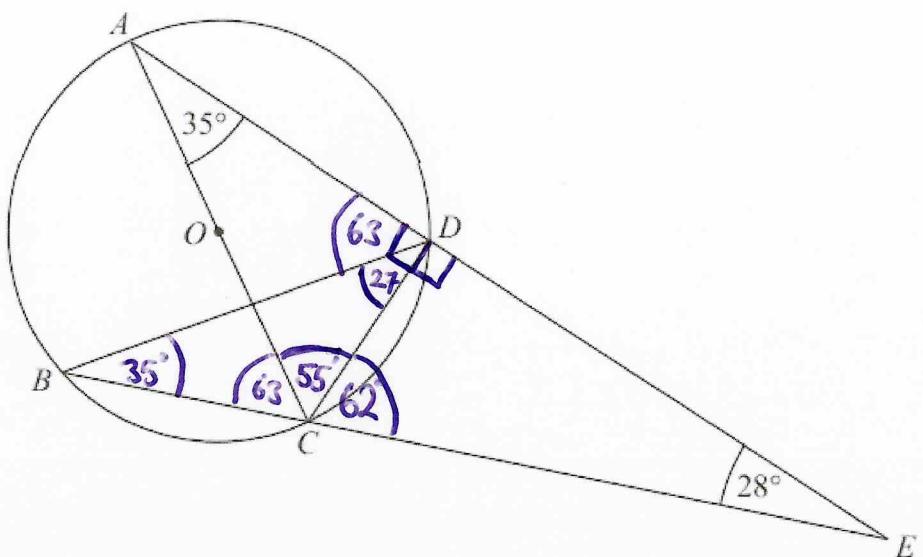
You must **not** use any circle theorems in your proof.

$$\frac{1}{2}x + \frac{1}{2}y = 90.$$

$$\angle OAC = \angle OCA = \frac{180-x}{2} = 90 - \frac{1}{2}x$$

$$\angle OBC = \angle OCB = \frac{180-y}{2} = 90 - \frac{1}{2}y$$

$$\begin{aligned} \angle ACB &= 90 - \frac{1}{2}x + 90 - \frac{1}{2}y \\ &= 180 - \frac{1}{2}x - \frac{1}{2}y \\ &= 180 - \underline{\left(\frac{1}{2}x + \frac{1}{2}y\right)} \\ &= 180 - 90 \end{aligned}$$



A, B, C and D are points on the circumference of a circle, centre O .
 AC is a diameter of the circle.

ADE and BCE are straight lines.

Work out the size of angle BDC .

Write down any circle theorems that you use.

$DBC = 35^\circ$ Angles in the same segment are equal
 $ADC = 90^\circ$ Angle in a semi circle is a right angle

$DCE = 62^\circ$ Angles in a triangle add to 180°

$ACD = 55^\circ$ Angles in a triangle add to 180°

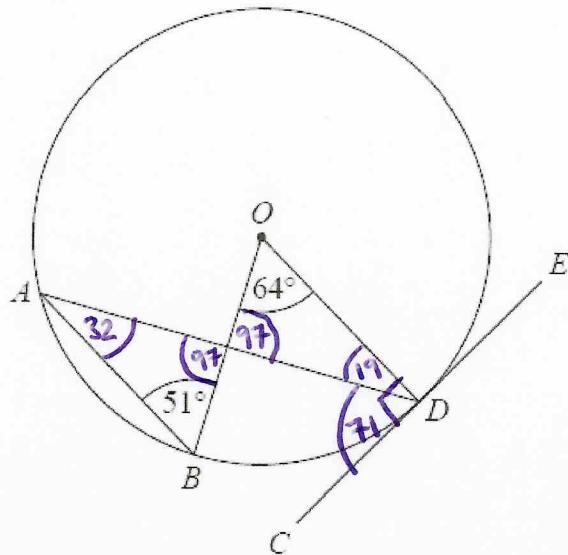
$BCA = 63^\circ$ Angles on a straight line add to 180°

$ADB = 63^\circ$ Angles in the same segment

$BDC = 27^\circ$ $90 - 63 = 27$

27

21 A, B and D are points on a circle with centre O .
 CDE is the tangent to the circle at D .



Work out the size of angle ADC .
 Write down any circle theorems you use.

$BAD = 32^\circ$ Angles at the centre are double the size of angle at the circumference.

Angle in the middle = 97° because angles in a triangle add to 180°

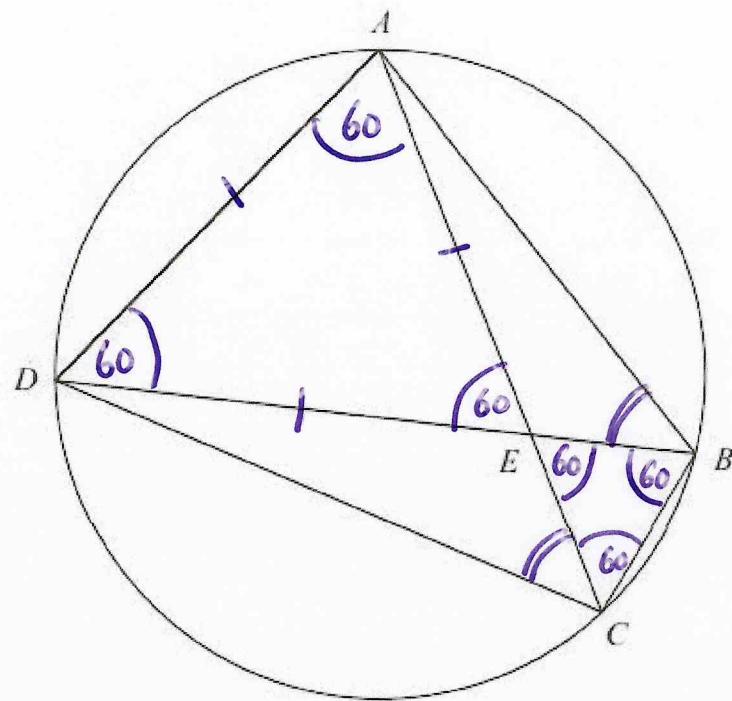
$ODA = 19^\circ$ Angles in a triangle add to 180°

$ADC = 71^\circ$ When a tangent meets a radius you get 90°

$$90 - 19 = 71$$

71

22 A, B, C and D are four points on a circle.



AEC and *DEB* are straight lines.

Triangle AED is an equilateral triangle.

Prove that triangle ABC is congruent to triangle DCB .

BC is common to both triangles

$\angle DBC = 60^\circ$ Angles that subtend the same chord are equal

$$ACB = ADB \quad " \quad " \quad " \quad "$$

$$ACD = ABD \quad \text{“} \quad \text{“} \quad \text{“} \quad \text{“}$$

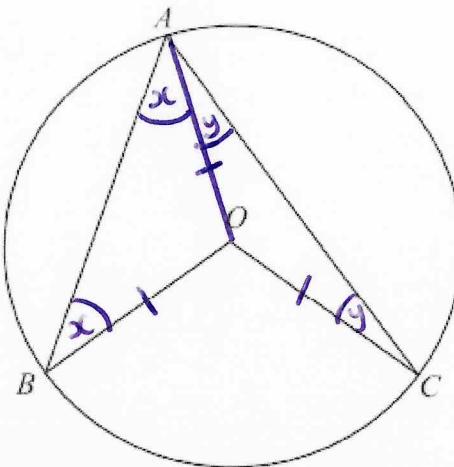
Triangle ABC is congruent to DCB

$$DBC = ACB = 60^\circ$$

$$ABC = BCD$$

Angle side Angle.

24 A, B and C are points on the circumference of a circle centre O .



Prove that angle BOC is twice the size of angle BAC .

$$\angle AOB = 180 - 2x$$

$$\angle AOC = 180 - 2y$$

Angles in a triangle add to 180°

$$\angle BOC = 360 - (180 - 2x) - (180 - 2y)$$

$$= 360 - 180 + 2x - 180 + 2y$$

$$= 2x + 2y$$

Angles around a point add to 360°

$$\angle BAC = x + y$$

$$\angle BOC = 2x + 2y$$

$$= 2(x + y)$$